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The structures of the trigonal compounds A1�xA
0
xB1ÿxO3 are

described, to a ®rst approximation, as a hexagonal close-

packed stacking of A3O9 and A3A
0
O6 layers. However,

quantitative analyses are usually performed in superspace,

with the structures considered as modulated composites made

of two subsystems: chains of A cations, and columns of trigonal

prisms, A
0
O6, and octahedra, BO6. It is demonstrated that an

alternative superspace description as a single modulated

structure can be found in terms of the aforementioned layers,

with a composition-dependent modulation parameter and

discontinuous atomic domains. In this approach, these

compounds ful®ll layer-stacking rules analogous to those

observed in other layered compounds. These rules translate

into a so-called closeness condition for the discontinuous

atomic domains in superspace; this condition is analogous to

that postulated in quasicrystals. Both superspace models, the

composite and the layered model, when considered without

displacive modulations, can be taken as two limiting idealized

paradigms and can be used as the starting point of a structure

re®nement. As an example, the structure of the trigonal phase

Sr6Rh5O15, which was previously re®ned as a modulated

composite [Stitzer, El Abed et al. (2001), J. Am. Chem. Soc.

123, 8790±8796], has been re®ned anew, with equivalent

results, as a single modulated structure taking as reference the

ideal layered structure. A similar superspace layer description

is applied to the recently reported orthorhombic family

A4m�4nA
0
nB4m�2nO12m�9n. This description allows the a priori

derivation of a re®neable superspace model that includes the

superspace symmetry and crenel functions and is valid for the

whole family. This model has been successfully applied to the

re®nement of the compound Ba12Co11O33 [Darriet et al.

(2002), Chem. Mater. 14, 3349±3363].
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1. Introduction

The hexagonal perovskite ABO3 can be considered as a

layered structure. ABO3 can be described by the stacking of

compact [AO3] layers along the c direction, thus creating

octahedral interstices in which the B cations are located as

intermediate layers (Lander, 1951). Variations in the stacking

rule and/or the inclusion of modi®ed layers in the stacking

sequence lead to numerous different compounds and homo-

logous series, which are known as intergrowth polytypoids

(Darriet & Subramanian, 1995). In particular, in recent years,

the existence of a series of trigonal compounds with the

general formula A3n�3mA
0
nB3m�nO9m�6n has been reported, and

a layered model has been proposed in order to describe the
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structure of these compounds in an approximate form (Darriet

& Subramanian, 1995; Stitzer, Darriet & zur Loye, 2001).

These compounds are formed by the stacking along c of mixed

layers of [A3O9] and of [A3A
0
O6]. The former layer is identical

to the compact layers of the ideal perovskite structure, and the

[A3A
0
O6] layer derives from the ®rst by the substitution of one

A
0

atom for three O atoms (Figs. 1a and 1b, respectively). The

stacking of these mixed layers creates both octahedral and

prismatic sites. The B cations are located at the octahedral

interstices, and the A
0

cations occupy the centers of the pris-

matic sites. The n/m value indicates the ratio between the

numbers of [A3A
0
O6] and [A3O9] layers. Whether the mate-

rials have hexagonal or rhombohedral lattices depends on the

n and m values. In the ideal-layer picture, where the distance

between successive layers is constant, the size of the trigonal

prisms is c2H, twice the size of the octahedra, where c2H is the c

parameter of the hexagonal perovskite. All members of the

family have a similar a parameter, of around 10 AÊ ' �3�1=2a2H ,

and a c parameter that depends on the integers n and m. In

some cases, the period of the stacking sequence and conse-

quently the c parameter can be very long, and the structures

can be considered to be incommensurate. The general formula

of these compounds can be expressed in an equivalent way as

A1�x�A0xB1ÿx�O3, with x = n/(3m + 2n), so that the composition

parameter x may be any number between the limits 0 and 1/2.

x = 0 corresponds to the reference 2H hexagonal perovskite,

with no trigonal prisms, while x = 1/2 represents the case

where all the layers are of the type [A3A
0
O6]. Incommensurate

cases correspond formally to irrational values of x and, in

practice, to experimental ratios of x with large denominators

(Zakhour-Nakhl, Claridge et al., 2000; Zakhour-Nakhl, Weill et

al., 2000; Evain et al., 1998).

Recently, we have demonstrated, in the case of other

layered homologous series, the great ef®ciency of the (3 + 1)-

dimensional superspace formalism (International Tables for

Crystallography, 1992, Vol. C, p. 797) for dealing quantita-

tively with layered structures, both commensurate and

incommensurate (Elcoro et al., 2000, 2001; Boullay et al., 2002).

The structures are described as modulated, with the funda-

mental modulation being constituted by step-like atomic

occupation functions that yield the necessary (occupied)

atomic positions when going from one layer to the next along

the stacking sequence. The deviations of the atomic positions

from their ideal-layer position are then taken into account by

small displacive modulations. In this picture, the average

interlayer distance is the basic distance along the stacking

direction to which the modulations are referred. The fact that

the presence of some atoms depends on which layer is under

consideration yields discontinuous atomic domains in the

superspace description, as happens when describing quasi-

crystals. The possible higher superspace-group symmetries of

the structures can be related to the two-dimensional symme-

tries of the layers involved and can be derived systematically.

In the families investigated, the superspace-group symmetry is

usually common to the whole family, and, furthermore, the

superspace description of the structures is independent of the

particular composition of each member of the series. Only the

modulation wavevector, which is related in a predictable way

to the composition, changes signi®cantly. This fact implies a

composition-dependent strain of the (3 + 1)-dimensional

superspace unit cell, while the atomic domains may change

their width but keep their basic features.

The fact that we can de®ne a common superspace structural

model for all layered structures in a given family can be

related to a common property of all these structures, viz. that

the layer sequence for a given composition is the sequence

that produces a distribution of the minority layers (compatible

with the global composition) that is as uniform as possible, i.e.

a so-called `uniform' sequence. This property is translated in

the superspace description into so-called closeness conditions

among the atomic domains (analogous to the conditions used

in the modeling of quasicrystals). These conditions univocally

determine the essential features of the common model.

Although this superspace viewpoint of layered compounds

would seem, in principle, a natural approach for the analysis of

the trigonal A3n�3mA
0
nB3m�nO9m�6n compounds mentioned

above, the quantitative analysis, through diffraction experi-

ments, of these structures is currently performed by a rather

different approach (Ukei et al., 1993; Evain et al., 1998;

Gourdon et al., 1999; Perez-Mato et al., 1999; Zakhour-Nakhl,

Claridge et al., 2000; Zakhour-Nakhl, Weill et al., 2000;

Zakhour-Nakhl, Darriet et al., 2000; Stitzer, Smith et al., 2001;

Stitzer, El Abed et al., 2001). Superspace tools are indeed

employed, but the structures are considered and analyzed as

commensurate or incommensurate modulated composites (van

Smaalen, 1991). The system is considered to be modulated,

with two subsystems having a different average periodicity

along the c axis and the same lattice periodicity in the plane

�x; y�. The ®rst subsystem is formed by the A
0
, B and O atoms,

which are seen as a set of [A
0
B]O3 columns, parallel to the c

axis, which form trigonal prisms [A
0
O6] and octahedra [BO6]

that share faces. There are three [A
0
BO3] columns in the �x; y�

plane of the unit cell. The second subsystem is formed by the

A cations, which form three chains between the [A
0
BO3]

Figure 1
Schematic representations of (a) [A3O9], (b) [A3A

0
O6] and (c) [A8A

0
2O18]

layers of type A. The corresponding B-type layers are obtained by
inversion symmetry with respect to the origin. Black, white and gray
points represent A, O and A0 atoms, respectively. In (b) and (c) the
crosses indicate the origins of the two and three translated layers
equivalent to the layers shown in the ®gure for the trigonal and
orthorhombic families, respectively.



columns (see Fig. 2). In this approach, the ratio n/m yields the

number of trigonal prisms �Np� and octahedra �No� in the

chains through the expression No=Np = 1� 3�m=n�. In each of

the three columns, the number and arrangement of the prisms

and octahedra are the same, but they are shifted along the c

direction. This viewpoint allows a simple interpretation of the

diffraction diagram as coming from these two interacting

subsystems, the A subsystem having a different average peri-

odicity along the c direction from the [A
0
BO3] subsystem. In

this modulated composite picture, each subsystem is modu-

lated (with respect to its average periodicity) with a period

corresponding to the average periodicity of the other

subsystem.

The composite description of the trigonal compounds

A1�x�A0xB1ÿx�O3 seems quite far from the layered picture. In

the composite case, two average length scales along c are

de®ned and associated with different parts of the total struc-

ture, while in the layered case, a single average period is

considered for the whole structure. In the composite

description, a physical picture is somehow implicit, where the

inter-subsystem interactions are much weaker than the intra-

subsystem interactions. This physcial picture highlights the

possible one-dimensional character of the structure. This is the

situation, for instance, in typical composites such as inclusion

compounds (Peral et al., 2001a,b). On the other hand, in the

layer description, by de®nition, there is not much looseness in

the plane perpendicular to the stacking direction, since a

signi®cant stiffness of the layers is implied. Hence, we may

wonder if these structures can be quantitatively described and

analyzed as layered modulated structures or if only the

composite description is appropriate.

The purpose of this paper is to demonstrate that the trigonal

A1�x�A0xB1ÿx�O3 compounds can be correctly and ef®ciently

described as modulated layered systems with a single average

period, analogously to the way in which other families of

layered compounds are described (Elcoro et al., 2000, 2001).

Starting from the usual description as composite structures, we

derive a common superspace model in terms of layers and

show its direct relation, as in other families, to the fact that the

layer sequence for any composition should be uniform. Under

this layer approach, the superspace group that de®nes the

symmetry of the structures for any composition can be derived

a priori from the symmetry of the layers, where a maximal

symmetry principle is assumed. As a practical example of the

ef®ciency of this superspace modulated-layer model, the

trigonal compound Sr6Rh5O15, which has been studied within

the composite description (Stitzer, El Abed et al., 2001), has

been newly re®ned under the layer approach.

Finally, the power of the modulated-layer viewpoint is

further demonstrated by its application to the analysis of the

recently discovered (Boulahya et al., 2000a,b) orthorhombic

family A4m�4nA
0
nB4m�2nO12m�9n. These compounds also reduce

to the general formula A1�x�A0xB1ÿx�O3, but, in contrast with

the trigonal family, they can be considered to be the result of

the stacking of `normal' compact [A8O24] layers (eight units of

the basic hexagonal perovskite) and layers of [A8A
0
2O18]

composition (see Fig. 1c). Following analogous rules to those

observed in the superspace modulated layered model of the

trigonal family, a superspace model and superspace-group

symmetry can be postulated for this orthorhombic family. This

model has been recently applied and con®rmed in the case of

the m = 2, n = 1 member of the family (Darriet et al., 2002).

2. Superspace model of the trigonal A1+xAx
000B1ÿxO3

compounds as modulated layered structures

2.1. The modulated composite model in superspace

The superspace formalism has been extensively used in the

description of different members of the trigonal family

A1�xA
0
xB1ÿxO3, but a composite approach has always been

applied (Ukei et al., 1993; Evain et al., 1998; Gourdon et al.,

1999; Perez-Mato et al., 1999; Zakhour-Nakhl, Claridge et al.,

2000; Zakhour-Nakhl, Weill et al., 2000; Zakhour-Nakhl,

Darriet et al., 2000; Stitzer, Smith et al., 2001; Stitzer, El Abed

et al., 2001). The structure is interpreted as consisting of two

interpenetrating substructures with the same periodicity in the

�x; y� plane but with different periodicities along the c axis.

The ®rst subsystem, which is used as a reference in the

superspace embedding, is the set of [A
0
B]O3 columns along

the c direction, which are formed, in general, by the stacking

of [BO6] octahedra and [A
0
O6] prisms that share O3 faces. The

second subsystem is limited to the A cations, which form

approximately linear chains along the c direction. In order to
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Figure 2
The idealized arrangement of octahedra and trigonal prisms for a
compound with composition x = 3/17 viewed as a composite (octahedra/
prism ratio of No=Np = 14/3). O atoms are located at the vertices of the
octahedra and prisms, and B and A0 atoms occupy the centers of the
octahedra and trigonal prisms, respectively. Black points represent A
cations.
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understand this composite description, it is convenient to start

from the ideal structure that corresponds to x = 0. For this

limiting composition, the ideal structure reduces to the

hexagonal perovskite 2H-ABO3. It is formed by the alternate

stacking of two types, say A and B, of close-packed hexagonal

layers with AO3 composition (we use the roman symbols A

and B to denote the layer types and the italic symbols A and B

for the general elements in the stoichiometric formula). An A

layer is shown in Fig. 1(a), and the B layer is obtained from the

A layer by the application of the inversion symmetry at the

origin of the cell outlined in the ®gure. As a consequence of

the AB packing, columns of face-sharing [BO6] octahedra are

formed along the c axis. The B cations are located at the

centers of these octahedra. The unit-cell parameters are

a2H = b2H ' 5:7, c2H ' �2=3�1=2
a2H = 4:6 AÊ and � = � = 90,


 = 120�. The unit cell of this ideal structure contains a single

[BO3] column and a single chain of A cations. The unit cell

includes along the c axis a single period of the [BO3] column

(containing two octahedra with different orientations) and

two periods of the A chain, so that the structure can be

interpreted as a commensurate composite of [BO3] columns

and A chains with a relation (1:2) between their periods. For a

general composition x 6� 0, some octahedra are replaced by

trigonal prisms that also share faces with the octahedra at both

sides and that contain an A
0

cation at their center (see Fig. 2).

The proportion of trigonal prisms and octahedra in the chain is

the same as the proportion of A
0

and B cations: x/(1 ÿ x). For

all compositions there are three different shifted chains so that

the projection of the unit cell onto the �x; y� plane is three

times the unit cell of the ideal hexagonal perovskite. The

common unit-cell �x; y� projection is outlined in Fig. 1(b). This

projection is de®ned by a = ÿa2H � b2H , b = ÿa2H ÿ 2b2H , and

contains three [A
0
B]O3 columns, which are relatively shifted

by c/3 along the c axis. According to the stoichiometric

formula, whenever a B cation is replaced in the columns by an

A
0

cation, an extra A cation must be included in the A chains.

Therefore, the average periods of the two subsystems are

related by c1=c2 = (1 + x)/2, where c1 is the average period of

the [A
0
B]O3 columns (without distinguishing the cation type)

and c2 is the average period of the A chains. Taking the

[A
0
B]O3 columns as the reference system in the superspace

construction, the unit cell of the average structure is then

formed by the basis vectors a, b (de®ned above) and

c1 ' 0:5c2H . The modulation parameter of the superspace

construction is the ratio between the two average periodicities,


C = c1=c2 = (1 + x)/2.

According to the experimental results, all structures of the

family investigated up to now follow a common pattern in

superspace. Fig. 3(a) depicts the �x3; x4� or �z; t� projection of

this common superspace structural model when displacive

modulations are neglected. Fig. 3(a) corresponds to the

particular case x � 1=9:1. Four unit cells have been included

to clarify the stacking sequence. In Fig. 3(a), a single [A
0
B]O3

column and a single chain of A cations is shown. The hori-

zontal axis represents the z coordinate in real space (the

stacking direction), and the vertical axis is parallel to the

internal space. The discontinuous atomic domains (ADs)

along the internal space for some atoms are introduced into

the mathematical model by so-called crenel functions

(Petricek et al., 1995) and are represented in the ®gure by

vertical bars. In the real structures the actual ADs deviate

from the vertical position according to strong displacive

modulations, which are not included in the ®gure. Two types of

ADs, OA and OB, which are located at x3 = z = 1/2, can be

distinguished for the O atoms. These types correspond to the

two possible orientations of the O3 triangles in the [A
0
B]O3

column, whose orientations are associated with the A- and B-

type layers. In fact, there are three ADs of type OA, which

represent the three O atoms at �x; y� = (ÿ1/6,ÿ1/6), (1/6,0)

and (0,1/6) that form the O3 triangle with an A-type orienta-

Figure 3
The superspace construction of (a) the ideal composite structure taking as reference the [A0B]O3 chains, (b) the ideal composite structure taking as
reference the subsystem of A columns and (c) the ideal layer structure. (a) and (b) give rise to the same real-space atomic positions, but these differ from
those of (c). Thick black, thick white, thin black, thin white and very thin gray atomic domains represent O atoms of A-layer type, O atoms of B-layer
type, B cations, A0 cations and A elements, respectively.



tion. As the three atoms have the same z coordinate, their

ADs superpose in the ®gure. Another three ADs of type OB,

which are located at �x; y� = (1/6,1/6), (ÿ1/6,0) and (0,ÿ1/6),

also superpose in this projection and generate the B-type

triangles in the column. For any composition, the real struc-

ture is obtained by a horizontal cut of this superspace

construction. Clearly, for the reference structure (x = 0), as


C = 1/2, the horizontal cut gives rise to alternate A- and B-

type triangles, which form columns made just of octahedra.

For x 6� 0, as 
 6� 1=2, OA±OA or OB±OB consecutive triangles

enter into the sequence and introduce trigonal prisms among

the octahedra in the correct proportion. To complete the

construction of the columns, the A
0

and B cations must be

considered. They are located midway between the O-atom

triangles, at x3 = z = 0. In Fig. 3(a), these ADs have been

represented by thinner bars. Obviously, we must introduce the

ADs that represent the B cations in the octahedral interstices,

where OA±OB or OB±OA sequences occur, and the A
0

cations

between two OA or two OB consecutive ADs, in the trigonal

interstices. Finally, the A cations belong to the second

subsystem; therefore, in the ideal-composite description they

are represented by ADs parallel to the x3 axis (van Smaalen,

1991). The other two columns and the other two A chains of an

�x; y� unit cell are obtained by shifts of (1/3,2/3,2/3,0) and

(2/3,1/3,1/3,0) for all the ADs represented in the ®gure.

Although displacive modulations have been disregarded,

the structure represented in Fig. 3(a) is strongly modulated

through the step-like occupational modulations represented

by the discontinuous ADs. This scheme predicts, for any

composition, the sequence of octahedra and prisms along the

columns and explains the presence of the prisms as a funda-

mental modulation of period c2, which is caused by the

neighboring presence of the c2 periodic A chains. We are,

therefore, very far from the picture of a composite with weak

interactions among the subsystems. It is, in fact, the chemical

interaction between the two subsystems that is causing the

actual location of the prisms as a primary modulation. One

important feature of the con®guration of ADs depicted in

Fig. 3(a) is the ful®llment of a so-called closeness condition

among them, so that the domain borders of neighboring ADs

coincide when projected along the real z axis on the one-

dimensional internal subspace. This closeness condition is

particularly remarkable among the ADs corresponding to the

A
0

prismatic sites, as stressed in the ®gure. An analogous

property has been postulated for the two- or three-dimen-

sional ADs in the superspace description of quasicrystals

(Cornier-Quiquandon et al., 1992; Katz & Gratias, 1993). Here,

however, the property comes as an experimental fact and is

directly related to the type of octahedra±prisms sequences

that are realized in the columns as a function of composition.

The closeness condition among the ADs of A
0

cations means

that for any composition in real space, the trigonal prisms tend

to separate along the columns as far as possible or, in other

words, the trigonal prisms distribute along the column in the

most `uniform' way that is compatible with the discrete

proportion of octahedra and prisms. The prisms can be

interpreted as `defects' in the ideal sequence of octahedra and

follow a so-called `uniform' sequence. These uniform

sequences can also be directly obtained as ordered inter-

growths of the simplest sequences through Farey tree rules

(Perez-Mato et al., 1999). According to the scheme of Fig. 3(a),

the [BO6] octahedra and [A
0
O6] prisms would have the same c

length (c1). This is strongly modi®ed when the effect of the

displacive modulations is taken into account, but the closeness

condition of the ADs, and hence also the uniform property of

the sequences in the [A
0
B]O3 columns, is maintained.

The superspace symmetry of all structures, both commen-

surate and incommensurate, when described in this composite

approach is given by the superspace group R�3m�00
C�0s. A

full set of symmetry operations and centering translations in

the periodic basis �x1; x2; x3; x4� is given on the left side of

Table 1. The parameter 'C depends on the position along the

internal space of the inversion symmetry with respect to the

origin of the supercell, and 'C is meaningful for calculating the

three-dimensional real-space atomic positions according to a

t = 0 cut. Alternatively, we can set 'C to zero in the table and

consider a non-zero t section. The corresponding re¯ection

conditions are also included in Table 1. In the

superspace description, the structural parameters are the

�x; y; z� = �x1; x2; x3� average positions of the independent

atoms in the unit cell, plus the position (x4) of the center of the

ADs and their width, if they are discontinuous. Table 2 lists

these structural parameters of the composite picture. Finally,

the displacive modulations of the ADs must be included to

describe the real structures. These displacive modulations are,

in general, restricted by the superspace site symmetry of the

corresponding ADs. The general forms of the displacive

modulations allowed for this family are given in the last

column of Table 2. Thus, the re®nement of these structures

reduces to the determination of these modulation functions

and the coordinates of the centers of the ADs that are not

®xed by symmetry (in this case only the x1 coordinate of the

center of the oxygen AD). Once the ADs and their displacive

modulations have been determined, the atomic positions are

obtained by a horizontal cut of the superspace construction.

For commensurate compositions, i.e. for rational values of the

x parameter, the resulting structure is periodic. The possible

space groups for these commensurate structures are quite
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Table 1
Symmetry operations of the superspace groups R�3m�00
C�0s (composite
option) and X �3c1�00
L�00 [layer option, which is equivalent to
P�31c�1=3; 1=3; 
L�00] and the resulting re¯ection conditions [superspace
groups No. 160.2 and No. 163.1, respectively (International Tables for
Crystallography, 1992, Vol. C, p. 797)].

R�3m�00
C�0s X �3c1�00
L�00

x1; x2; x3; x4 x1; x2; x3; x4

x2;ÿx1 � x2;ÿx3; 2'C ÿ x4 x2;ÿx1 � x2;ÿx3; 2'L ÿ x4

x1; x1 ÿ x2; x3;
1
2� x4 x1; x1 ÿ x2;

1
2� x3; x4

2
3� x1;

1
3� x2;

1
3� x3; x4

2
3� x1;

1
3� x2; x3;

2
3� x4

1
3� x1;

2
3� x2;

2
3� x3; x4

1
3� x1;

2
3� x2; x3;

1
3� x4

Re¯ection conditions

�hklm� 2h� k� l = 3n �hklm� 2h� k� 2m = 3n
�h0lm� m even �h0lm� l even
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limited and can be readily derived from the underlying

superspace group (International Tables for Crystallography,

1992, Vol. C, p. 797) as a function of the modulation parameter


C (i.e. composition) and the position considered for the real-

space section ('C in Table 1). A full list of these possible space

groups, which is reproduced in Table 3, was given by Evain et

al. (1998) and Perez-Mato et al. (1999). Note, however, that

some of these space groups are not valid for discontinuous

ADs like those presented here and can be disregarded. For

more details about the superspace model of this family see

Perez-Mato et al. (1999).

2.2. The modulated layered model in superspace

The modulated composite superspace model, as explained

above, has been extensively used for the experimental deter-

mination of the structures of the trigonal family by means of

diffraction techniques. However, because of the underlying

ambiguity of the superspace construction, there are other

possible descriptions using the superspace embedding. This

fact is already evident in the case of a composite structure,

where one of the two subsystems is arbitrarily taken as the

reference system. The interchange of the roles of both

subsystems results in a different superspace construction with

a different superspace group (van Smaalen, 1991; Yamamoto,

1992). However, this situation arises for all superspace

constructions. Incommensurately modulated structures and

quasicrystals also in®nitely accept many different (but

equivalent from the physical point of view) superspace

descriptions. The ambiguities of superspace construction have

been discussed by Elcoro & Perez-Mato (1996). We will use

the procedures described in this reference to obtain a quan-

titative description of the structures of this trigonal family that

is in accordance with the idea that these structures come from

the stacking of layers, rather than from the interpenetration of

octahedra/prisms columns and atomic chains that is assumed

in the composite approach.

The change from one description to the other involves two

steps. In the ®rst, the ideal (without displacive modulations)

composite structure with the [A
0
B]O3 subsystem as reference

is transformed into a second superspace description of the

same ideal composite, but taking as reference the A subsystem.

Then, the ADs are continuously transformed until they form

another structure, which can be interpreted as the ideal

stacking of layers [A3O9] and [A3A
0
O6]. This ideal layered

structure can then be taken as an alternative reference over

which to add displacive modulations for arriving at the actual

atomic positions of the real structure. The ®rst step essentially

reduces to the interchange of the roles of the two subsystems.

The construction of Fig. 3(a), whose structural parameters and

superspace group are given in Tables 1 and 2, takes as the

reference the [A
0
B]O3 subsystem. The average unit cell is

de®ned by the a and b cell vectors, which are common to both

subsystems, and the c parameter of the [A
0
B]O3 subsystem, c1.

The modulation parameter is the ratio between the c para-

meters of the second and the ®rst subsystems, 
C = c2=c1. The

ADs of the A
0
, B and O elements are vertical in the ideal

model, so that the average positions of these atoms are well

de®ned, while the A cations have no clear average position in

this reference basis. The size of each AD is indicated in

Fig. 3(a) and is ®xed by the composition. To interchange the

roles of the two subsystems we just construct the average unit

cell with the c cell vector of the second subsystem, c2; we take

as the modulation parameter 

0
L = c1=c2 = 1=
C and inter-

change the x3 and x4 coordinates in Tables 1 and 2. Finally, as is

usual in the analysis of modulated structures, we keep the

value of the modulation parameter in the range (0,1). When

the modulation parameter falls outside this range, a new

modulation parameter 
L = N � 1=
C can be de®ned, where

N is an integer number, such that 
L belongs to the (0,1)

interval. Fig. 3(b) depicts the alternative superspace

construction after this process, which uses the subsystem made

of columns of A cations as the reference structure. In this

particular case, as x � 1=9:1 and 
C � 0:56, instead of using

the modulation parameter 

0
L � 1=
C, the equivalent value


L = 2ÿ 1=
C = 2x/(1 + x) � 2y � 0:2 is used, where the

composition-related y parameter has been introduced to

simplify the notation (see below). The superspace construc-

tions of Figs. 3(a) and 3(b) give, for the horizontal cut along z,

the same atomic positions, so that both constructions are

equivalent. The mathematical relationships between the

constructions are given in Appendix A. Obviously, the change

of the reference subsystem and modulation parameter results

in a different indexing of the diffraction pattern, with different

sets of main and satellite re¯ections. The relations between the

indices of a re¯ection in each basis are also included in

Appendix A.

In the second step, we transform the ADs in Fig. 3(b), while

maintaining the same unit-cell parameters and the same

widths of the atomic domains along the internal subspace. The

Table 2
Structural parameters in the superspace description for a trigonal phase
of general composition A1�x�A0xB1ÿx�O3 when described as a composite
modulated structure [superspace group R�3m�00
C�0s] and as a layered
structure A�A0yB1ÿ2y�O3�1ÿy� [superspace group X �3c1�00
L�00].

The parameters of the layer option are only indicated in square brackets when
they differ from those of the composite option. Underlined coordinates are
re®neable. The ®fth and sixth columns indicate the center and size of the
atomic domains. In the composite option, the B, A

0
and O atoms belong to the

®rst subsystem and the A atom to the second subsystem. The A atom in the
composite option is referred to its own subsystem. The seventh column shows
the point symmetry of the atomic domain and the eighth column the
conditions ful®lled by the corresponding displacive modulation.

Atom x1 x2 x3 x4 �
Point
symmetry Displacive modulation

B 0 0 0 0 �1ÿ x�=2 �3 �0; 0;U3�x4�� =
�0; 0;ÿU3�ÿx4���1ÿ 2y�

A
0

0 0 0 1/4 x=2 32 �0; 0;U3�x4�� =
�0; 0;ÿU3�ÿx4��[1/4] [1/2] �y�

O 1/6 0 1/2 1/4 1/2 12 �U1�x4�;U2�x4�;U3�x4�� =
�U1�ÿx4� ÿ U2�ÿx4�;
ÿU2�ÿx4�;ÿU3�ÿx4��

�1=4� �0� �1ÿ y�

A 2/3 0 1/4 ± 1 32 �U1�x4�;U2�x4�;U3�x4�� =
�U1�ÿx4� ÿ U2�ÿx4�;
ÿU2�ÿx4�;ÿU3�ÿx4��
��ÿU1�x4 ÿ 1

3�ÿU2�x4 ÿ 1
3�;ÿU1�x4 ÿ 1
3�;U3�x4 ÿ 1

3��



change consists of the shearing of the oblique ADs in the

®gure until they are vertical, while keeping the centers of the

ADs at the same positions. This transformation can also be

described as the introduction within the composite model of a

set of very speci®c sawtooth-like displacive modulation func-

tions for the A
0
, B and O domains. The resulting superspace

model is depicted in Fig. 3(c). By this transformation we

manage to have all the atoms in the structure with the same

average periodicity. In other words, the composite model

becomes, by means of a speci®c displacive modulation, a

(atomic occupation) modulated structure with a single period.

If we now take this structure as an alternative reference for the

actual atomic positions of the real structure, we are describing

the structure as a normal modulated structure with a single

average period instead of a composite. Note that the closeness

condition among the ADs is maintained. It is interesting to

observe what happens at z = 1/4 or 3/4. As clearly seen in

Fig. 3(c), at these positions there are two different intervals

along the internal space. The thickest bars represent a set of

three OA atoms at z = 1/4 and another set of three OB atoms at

z = 3/4, and the thinnest bars represent A
0

cations located in

the �x; y� plane at the center of the triangle de®ned by the

three O atoms. With this viewpoint, we can say that the A
0

cation replaces the three O atoms at z = 1/4 or 3/4. At z = 0 or

1/2, whether a B cation is present depends on the internal

space coordinate. It is clear from the ®gure that the vacancies

occur whenever there is an A
0

cation in the previous or next

AD (along z) instead of the three O atoms. Considering a

horizontal cut that corresponds to the real structure, the

majority motif is a sequence of three OA atoms, a B cation,

three OB atoms, another B cation etc., i.e. consecutive O6

octahedra with a B cation at their center. However, in some

cases, instead of the three O atoms, an A
0
cation is present with

one B vacancy on each side. Therefore, in this region, the

sequence is three OA (OB) atoms, an A
0

cation and three OA

(OB) atoms, i.e. a single trigonal prism of type A or B replacing

two octahedra. The z size of the trigonal prisms is now twice

the size of the octahedra. Note that in the ®rst construction

(Figs. 3a and 3b) the prisms and octahedra had the same size.

In addition, the A cations are now located at the same z

position as the A
0
and O atoms, i.e. the A cations belong in this

reference structure to a perfect layer that is perpendicular to

the c axis.

The complete structure contains three [A
0
B]O3 columns

and three chains of A atoms per �x; y� unit cell, all of which in

the composite construction (depicted in Fig. 3a) are obtained

by the centering translations of Table 1. In this alternative

superspace description, these centering translations become

(1/3, 2/3, 0, 1/3) and (2/3, 1/3, 0, 2/3) because of the interchange

of the x3 and x4 coordinates and the corresponding change of

the modulation parameter. These symmetry elements have a

non-integer component along the internal space but not along

the x3 or z coordinate. Therefore, the other two [A
0
B]O3

columns and A chains superpose in Fig. 3(c) at the same z

positions. As a result, a complete set of atomic surfaces is

formed by three sets of ADs equivalent to the set shown in

Fig. 3(c), with two of the sets being shifted, by 1/3 and 2/3,

along x4 with respect to that of the ®gure. Obviously, these two

sets of additional ADs are also globally shifted by (1/3, 2/3)

and (2/3, 1/3), respectively, on the �x; y� plane. As an example,

Fig. 4 schematically shows the effect of the superposition of

the three sets of ADs at z = 1/4. According to the different

types of AD superpositions, the internal space is divided into

different intervals. In some regions, nine O atoms and three A

cations are located at the same z coordinate, and thus [A3O9]

layers are built up with the �x; y� coordinates corresponding to

the ideal con®guration of an A-type layer, as shown in

Fig. 1(a). For other values of the internal coordinate, two sets

of ADs contribute six O atoms and the third contributes a

single A
0

atom. This superposition happens in three different

ways, which depend on which of the three AD sets contributes

the A
0

atom. In these cases, [A3A
0
O6] layers are built up. One

of these three layers is depicted in Fig. 1(b), and the other two

are shifted by (1/3, 2/3) and (2/3, 1/3). The three layers can be

denoted as A1, A2 and A3 layers. Similarly, four possible

B-type layers are located at z = 3/4: B (with [A3O9] compo-

sition), B1, B2 and B3 (with [A3A
0
O6] composition). Midway

between these layers, the B cations also form layers either of

three atoms (located in the octahedral interstices between

consecutive [A3O9] layers) or of two atoms of three different

types, midway between an [A3O9] and an [A3A
0
O6] layer, in

the two resulting octahedral interstices.

Fig. 5 shows a scheme of the resulting superspace

construction, which stresses the possible interpretation of the

structure as being formed by the stacking of layers. The stoi-

chiometric formula can be rewritten in terms of the parameter

y = x/(1 + x) = n=3�m� n� as AA
0
yB1ÿ2yO3�1ÿy�, which is a more

natural way to indicate the atomic proportions from Fig. 5.

The proportion of substituted layers [A3A
0
O6] in a layer-
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Table 3
Possible space groups for commensurate structures with superspace
group X �3c1�00
L�00, modulation parameter 
L = 
L � rL=sL and section
'L (layer option) or with superspace group R�3m�00
C�0s, modulation
parameter 
C = rC=sC and section 'C (composite option, where rL, sL and
sC are integer numbers).

In all cases, the number in the International Tables for Crystallography (1992,
Vol. C, p. 797) of the resulting space group or equivalent is given. The space
groups with asterisks are not realized, as a result of the discontinuous atomic
domains considered for this compound series.

rL even 'L = 0 (mod. 1=sL) 'L = 1/2 (mod. 1=sL) 'L arbitrary
sL = 3n 'C = 0 (mod. 1=sC) 'C = 1=2sC (mod. 1=sC) 'C arbitrary
rC = 3n
sC even R�3c (No. 167) �R�3c (No. 167) R3c (No. 161)

rL odd 'L = 0 (mod. 1=2sL) 'L = 1=4sL (mod. 1=2sL) 'L arbitrary
sL = 3n 'C = 0 (mod. 1=2sC) 'C = 1/4 (mod. 1=2sC) 'C arbitrary
rC = 3n
sC odd �R�3 (No. 148) R32 (No. 155) R3 (No. 146)

rL even 'L = 0 (mod. 1=3sL) 'L = 1/2 (mod. 1=3sL) 'L arbitrary
sL 6� 3n 'C = 0 (mod. 1=3sC) 'C = 1=2sC (mod. 1=3sC) 'C arbitrary
rC 6� 3n
sC even P�3c1 (No. 165) �P�3c1 (No. 165) P3c1 (No. 158)

rL odd 'L= 0 (mod. 1=6sL) 'L= 'L (mod. 1=6sL) 'L arbitrary
sL 6� 3n 'C = 0 (mod. 1=6sC) 'C = 1/4 (mod. 1=6sC) 'C arbitrary
rC 6� 3n
sC odd �P�3 (No. 147) P321 (No. 150) P3 (No. 143)
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sequence period is given by 3y. This formula uses the A

cations, which are present in all layers at the same �x; y�
positions, as the reference composition and stresses the

substitution of a single A
0

cation for three O atoms. We have

thus arrived at a zeroth-order superspace model for the

description of this family. This model corresponds to a

sequence of ideal layers of [A3O9] and [A3A
0
O6] that stack

along the c axis, with B cations in their octahedral interstices,

as proposed by Darriet & Subramanian (1995). The difference

is that the present superspace model predicts a speci®c layer-

stacking sequence for each composition and can be further

re®ned to describe real structures, with the re®nement starting

from the ideal layer con®guration. The superspace group and

re¯ection conditions of this alternative superspace embed-

ding/setting that corresponds to the layer description are given

in the second column of Table 1. The structural parameters of

the asymmetric unit (centers and width of the atomic domains,

point symmetry, and general expressions for the displacive

modulations) are given in brackets in Table 2.

2.3. Properties of the layer model: layer-stacking rules

At this point, we can consider whether it is possible to

predict a priori the superspace construction of Fig. 5 and its

superspace symmetry if we know only that the structure

consists basically of the stacking of layers, as shown in

Figs. 1(a) and 1(b), and equivalent sequences. Indeed, it is

possible to show that the superspace layer model, which is

derived above as valid for all structures of the family, implies

that some general rules are being ful®lled by the layer

sequences and that these rules are indeed suf®cient to derive

the model univocally. These general rules could then be used

in other layered structural families to derive a priori the

relevant superspace model.

Four main principles seem to be at work: (i) the alternation

of layers of type A and B; (ii) the physical equivalence of

layers, independently of their type (A or B) or of origin shifts;

(iii) the presence in the structure of all types of substituted/

modi®ed layers that differ by origin shifts; (iv) the uniform

distribution of the substituted/modi®ed layers. In the

following, we brie¯y schematize the use of these principles to

derive the superspace modulated-layer model of the trigonal

family A1�xA
0
xB1ÿxO3.

Firstly, as the sequence along the c direction should alter-

nate the two types of layers (A and B), the simplest way to

de®ne the average unit cell is to take as the average c para-

meter the distance between two consecutive A-type layers, i.e.

the average unit cell contains one A-type layer and one B-type

layer. In the �x; y� plane, the unit cell should de®ne a lattice

compatible with the two-dimensional lattices of all layers

involved in the stacking sequence. In the present case, that

lattice coincides with the lattice of the substituted layers

[A3A
0
O6]. The unit cell on the �x; y� plane is then the unit cell

shown in Fig. 1(b). Starting from the original formulation of

the compound series, A3n�3mA
0
nB3m�nO9m�6n, the ratio of the

number of [A3O9] and substituted [A3A
0
O6] layers in the

stacking sequence is m/n. This fact, translated into the super-

space construction, means that the total widths of the ADs

representing normal and substituted layers have the ratio m/n,

which should be true for the two kinds of layers (A and B).

Therefore, along the internal space, the x4 2 �0; 1� domain

representing the A-type layers has to be divided to represent

layers of [A3O9] composition and three different but equiva-

lent layers of [A3A
0
O6] composition. As the last three

substituted layers are equivalent, their width must be the

same, and the relative location of the ADs for those layers

must be symmetric. There is no reason to favor one of them

with respect to the others. The simplest way to ful®ll these

requirements is realized in Fig. 5 for both A-type and B-type

layers. However, these requirements would also be satis®ed

after the interchange or permutation of the Ai (i = 1, 2, 3) and/

or the Bi domains. Among the ®ve con®gurations for the Ai

Figure 5
An alternative scheme of the layer model, with all the projected atomic
domains (as indicated in Fig. 4). Thick black and white domains represent
layers of type A and B of [A3O9] composition. Thick gray domains denote
Ai and Bi layers of [A3A0O6] composition. Thin black and white domains
represent layers of three and two B cations for each �x; y� unit cell,
respectively. These cations are located at the corresponding octahedral
interstices created by the two neighboring layers. Dotted lines help to
check that the closeness condition is ful®lled (see text).

Figure 4
A scheme showing how individual atomic domains produce the layer
domains in superspace. Three equivalent but translated sets of atomic
domains superpose at z = 1/4 of Fig. 3(c). The superposition divides the
internal space into six regions with two different compositions: [A3O9]
(A-type layer) and [A3A0O6]. In the last case, there are three different
possibilities, namely the A1, A2 and A3 layers. The same division occurs
for the layers of type B at z = 3/4.



domains that differ from that of Fig. 5, two of them differ by a

shift of 1/3 or 2/3 along the internal space, so that they are

completely equivalent. The other three are also equivalent to

the previous con®gurations but with the sign of the stacking

direction changed. The same behavior is seen for the Bi

domains. Nonetheless, if the position of the Ai domains were

®xed as in Fig. 5, the interchange of the Bi domains would

result in different and non-equivalent superspace construc-

tions with different superspace groups, which would give rise

to different layer-stacking sequences in real space. However,

A1 and B1 (or A2 and B2; A3 and B3) layers must be uniformly

distributed (separated as far as possible in the stacking

sequence). By inspection, these conditions are only ful®lled

when neighboring Ai- and Bi-layer domains satisfy the

closeness condition mentioned previously, i.e. when the lower

limit of the projection of one domain onto the internal space

coincides with the upper limit of the projection of the

following domain onto the internal space. This closeness

condition is highlighted in Fig. 5 with dotted lines. Note that

this closeness condition forces 
L to have the known speci®c

value of 
L = 2y = 2x/(1 + x). For any composition, looking at

the construction of Fig. 5, it is evident that the largest distance

between A1 and B1 layers in the horizontal real space happens

when their closeness condition is ful®lled. For example, if the

B1 and B2 atomic domains were interchanged in Fig. 5, the

distance along the c axis between A1 and B1 (and also between

A2 and B2 pairs) belonging to a horizontal section would be

smaller than the resulting distance in Fig. 5.

Therefore, very general simple principles, mainly that of the

uniformity of the layer sequence, are suf®cient to yield the

superspace model of Fig. 5 as unique (except for equivalent

distributions of the ADs). The model is such that the stacking

sequence realized at each composition is the sequence that

distributes the [A3A
0
O6] layers in the most uniform way, thus

keeping a hexagonal AB stacking, with complete equivalence

between the three types of [A3A
0
O6] layers. It is important to

see how these rules, which are implicit in the superspace

construction of Fig. 5, can be applied directly to derive the

layer sequence for any composition. For the simple case of an

equal number of [A3O9] and [A3A
0
O6] layers (n = m = 1), the

stacking-layer sequence will be h11iL, i.e. a sequence of

1[A3O9]±1[A3A
0
O6] layers (the L subindex is used to differ-

entiate these layer sequences from those of octahedra and

trigonal prisms along the [A
0
B]O3 columns). The stacking

period is then obtained by repetition of this layer sequence,

with the three types of [A3A
0
O6] layers changed consecutively,

until an actual period is attained. Thus, the stacking period is

AB1AB2AB3 or equivalently BA1BA2BA3. Similarly, if m = 1

and n = 2, we have a sequence h12iL with a period of 18 layers

in the pattern AB1A2BA3B1AB2A3BA1B2AB3A1BA2B3. In

the inverse situation, for m = 2 and n = 1, the sequence of

[A3O9] and [A3A
0
O6] layers is h21iL, which yields a period of

18 layers in the form ABA1BAB2ABA3BAB1ABA2BAB3. In

a more general and complex case, we can again derive the

uniform layer sequence using the Farey tree for the

fraction n=�n�m�. For instance, for n = 3 and m = 5, as

3/8 = 1=3� 1=3� 1=2, in the sense of the Farey tree, the

sequence is to be h�21�2�11�iL: i.e. a sequence of two conse-

cutive blocks that correspond to the case n = 1, m = 2

[n=�n�m� = 1/3] plus a block that corresponds to n = 1, m = 1

[n/(n + m) = 1/2]. The actual layer-stacking period would

then be ABA1BAB2AB3, or equivalently BAB1ABA2BA3,

ABA2BAB3AB1 etc. All the equivalent sequences are related

by twinning (Gourdon et al., 2001). These layer sequences

yield speci®c octahedra±prism sequences along the [A
0
B]O3

columns, where the distribution of prisms is also uniform. For

instance, for m = n = 1, each column has a sequence of four

octahedra to one prism h41i that corresponds to x = 1/5 (one

prism every ®ve motifs). For m = 1, n = 2, the sequence in each

column is h3121i for a ratio of prisms x = 2/7 etc. The octa-

hedra and prism sequences can then also be obtained using

Farey tree rules, in this case for the ratio x. The prisms, the

minority motif, are therefore always disjointed in the

sequences.

The superspace group describing the symmetry of the ideal

layer con®guration given by Fig. 5 is X �3c1�00
L�00. This is

indeed the superspace group [expressed in its equivalent form

R�3m�00
C�0s] observed in the compounds of the family when

working in the composite setting, with the [A
0
B]O3 subsystem

as the reference (see x2.2 and Table 1). Therefore, the maximal

superspace symmetry de®ned by the ideal-layer (composition-

dependent) uniform sequence is maintained in the real

structures of this family, where the atoms strongly deviate

from the ideal-layer positions through displacive modulations.

Similar basic principles regarding the superspace descrip-

tion of layered compounds and its relation to the layer-

stacking rules have been shown to be valid in other compo-

sition-¯exible systems (Perez-Mato et al., 1999, 2003; Elcoro et

al., 2000, 2001; Boullay et al., 2002; Darriet et al., 2002). We can,

therefore, talk of a very general and powerful approach for

predicting the symmetry and structural properties for families

of this type of compound. In cases where real structures do not

maintain the maximal superspace symmetry, one of its

subgroups can be identi®ed as the working symmetry (Elcoro

et al., 2001).

2.4. The layers of B cations

The B-layer domains ®ll, at intermediate z coordinates, the

x4 regions that correspond to octahedral interstices between

successive layers. In Fig. 5, as the number of [A3O9] layers is

larger than the number of [A3A
0
O6] layers (which implies that,

in the superspace construction, the total size of the domains of

the [A3O9] layers is larger than the net size of the [A3A
0
O6]

domains), there are two kinds of layer domains for the B

cations. These domains are shown with different gray levels in

Fig. 5. There are three atoms in the layer (three B ADs) when

the two adjacent layers have [A3O9] composition and two

atoms (two ADs) when the consecutive layers are of [A3O9]

and [A3A
0
O6] type.

It is interesting to analyze the limits of the composition, and

the possibility of having new atomic layers of different

compositions within the same superspace model with the same

model of atomic ADs. For y< 1=6, there are more [A3O9]
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layers than [A3A
0
O6] layers, and the situation remains as

depicted in Fig. 5, with the B ADs forming two types of B-

cation layer domains: one with three and one with two atoms

in the �x; y� unit cell. However, when y> 1=6, there are more

[A3A
0
O6] layers than [A3O9] layers, and, as a result, the

consecutive-layer pairs in the sequence are A±Bi (or B±Ai)

and Ai±Bj (or Bi±Aj) layers, which give rise to two and one

octahedral interstices per �x; y� unit cell, respectively. For

those compositions, therefore, the domain layers of B cations

have either two or one AD. For the family composition limit

y = 1/3 (x = 1/2), all the atomic layers are of the Ai (Bi) type,

with a single octahedral interstice in between.

3. Application: refinement of the trigonal Sr6Rh5O15

compound

Up to now, all the quantitative structural analyses, in the

superspace framework, of compounds belonging to the

trigonal A1�xA
0
xB1ÿxO3 families have been performed in the

composite option (Ukei et al., 1993; Zakhour-Nakhl, Claridge

et al., 2000; Evain et al., 1998; Gourdon et al., 1999; Perez-Mato

et al., 1999, 2003; Elcoro et al., 2000, 2001; Boullay et al., 2002;

Darriet et al., 2002; Zakhour-Nakhl, Weill et al., 2000;

Zakhour-Nakhl, Darriet et al., 2000; Stitzer, Smith et al., 2001;

Stitzer, El Abed et al., 2001). This option is, in most cases, the

natural choice that arises from the analysis of the diffraction

diagram. In general, considering two subsystems with different

average periods in the composite starting model can maximize

the number of main re¯ections and minimize the set of

re¯ections that should be considered satellites. This approach

would, in principle, also minimize the magnitude of the

displacive modulations that should be re®ned. We therefore

expect that a modulated-layer description will require larger

displacive modulations, which may hamper a direct re®ne-

ment. In this section, our aim is to prove that, even under these

circumstances, the modulated-layer description is also

suitable, in practice, for direct re®nements of experimental

diffraction data. For this purpose we have re®ned the

Sr6Rh5O15 (x = 1/5, y = 1/6) trigonal phase using the

JANA2000 program package (Petricek & Dusek, 2000). The

structure of this compound was successfully determined by

Stitzer, El Abed et al. (2001) by single-crystal X-ray diffrac-

tion. The structure re®nement was performed both in the

standard three-dimensional description and in (3+1) dimen-

sions using the superspace formalism (composite option). The

authors demonstrated that the results of both re®nements

were equivalent, but the number of re®nement parameters in

the (3+1)-dimensional analysis was signi®cantly smaller (32

against the 44 parameters used in the three-dimensional

re®nement). We will prove that the alternative structure

determination in the superspace (layer option) also gives rise

to equivalent results. For our re®nement, the same set of 649

(I> 3�) X-ray re¯ections has been used. A detailed descrip-

tion of the experimental data collection is given by Stitzer, El

Abed et al. (2001).

The ideal model of Fig. 4, with the superspace group and

structural parameters given in Tables 1 and 2, was taken as a

starting point. For this compound, A = Sr, B = Rho, A
0
= Rhp,

x = 1/5 and y = 1/6. The subscripts o and p denote the octa-

hedral and prismatic Rh atoms, respectively. As a ®rst step, the

measured �hkl� re¯ections referring to the rhombohedral

supercell were transformed into �hklm� indices, where the four

indices refer to the H = h a� � k b� � l c� �m qL indexing,

with qL = 
Lc� = 1=3c� in this case. This transformation leads

to 644 independent re¯ections, 220 main re¯ections and 424

®rst-order satellites. Obviously, the classi®cation of the

re¯ections into main re¯ections and satellite re¯ections differs

from the same classi®cation in the composite option, as the

chosen average unit cell is different in both models. In

successive steps of the re®nement, higher harmonics of the

displacive modulations and the anisotropic thermal coef®-

cients (we use this term because the standard displacement

parameter could be confusing in this context) were introduced.

The maximum number of terms in the Fourier expansion of

the displacive modulation to be included for each AD is

limited by the number of atoms it represents in a commen-

surate modulated structure. For example, the small AD

representing the prismatic A
0

= Rhp cation in Fig. 3(c), and its

translation-related cations, gives rise to a single independent

atom in the three-dimensional structure. Therefore, no

displacive modulations are to be included in the Fourier series.

For other compositions with larger supercells, as the number

of independent Rhp atoms is also larger, more terms in the

Fourier series would be permitted. As a rule, the maximum

number of re®neable positional-displacive parameters for

each AD is the number of independent atomic coordinates

that result from that AD in the three-dimensional commen-

surate structure. For relatively small supercells, i.e. for

compositions with simple fractional x = r/s values as is the case

here, the maximal number of displacive parameters is usually

required to reach reasonable R values. Unlike the re®nement

in the composite option (Stitzer, El Abed et al., 2001), in the

layer model there is a unique subsystem, so that no W matrices

should be included in the system description (van Smaalen,

1991). The results of the re®nement are summarized in Tables

4 and 5. In Table 4, the crystallographic data and the main

results are included. This table should be compared with Table

2 of Stitzer, El Abed et al. (2001). The resulting R factors are

Table 4
Crystallographic data and structure re®nement for Sr6Rh5O15 in the layer
option.

Chemical formula SrRh5=6O2:5 (N = 6)
a, c1, c2 (AÊ ) 9.6517 (5), 4.3493 (1), 2.6096 (3)
q c�1=3
V (AÊ 3) 350.88
Superspace group X �3c1�00
�00
Section 'L � 1=4
No. of unique re¯ections 644
Criterion for observed re¯ections I< 3��I �
Re®nement on F 2

Extinction coef®cient 0.057 (10)
R, wR for all re¯ections 0.0368, 0.0807
R, wR for 220 main re¯ections 0.0333, 0.0790
R, wR for 424 ®rst-order satellites 0.0397, 0.0823
Goodness of ®t on F 2 2.91
��=��max ÿ0.047



very similar. Table 5 shows the re®ned structural parameters

(fractional atomic average coordinates, equivalent isotropic

displacement factors, and atomic positional and thermal

modulation coef®cients). As stressed by Stitzer, El Abed et al.

(2001), the space group of the three-dimensional structure is

R32. According to Table 3, the relevant section of the super-

space construction is therefore 'C = 'L = 1/4, in both the

composite and the layer options. The independent atomic

positions of the three-dimensional structure that results from

the ®nal re®ned superspace model are summarized in Table 6.
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Table 5
Fractional atomic average coordinates, equivalent isotropic displacement factors, and atomic positional and DWF modulation coef®cients for Sr6Rh5O15

in the layer option.

Modulation functions for a parameter � of an atom � de®ned in a restricted interval are given by the following: U�
��x4� =

Pk
n�0 U�

�;northo�n�x4�, where the
orthogonalized functions, obtained through a Schmidt orthogonalization routine, are given by

ortho�i �x4� � B�
0 �

Xk

n�1

A�
n sin�2�nx4� �

Xk

n�1

B�
n cos�2�nx4�;

with coef®cients B�
n and A�

n given below. For the Sr atom, the modulation functions are Fourier series

U�
��x4� � U�

�;0 �
Xk

n�1

U�
�;sn sin�2�nx4� �

Xk

n�1

U�
�;cn cos�2�nx4�:

The superspace group is X �3c1�00
L�00. (a) Parameters de®ning the position, width and equivalent thermal coef®cients for the atomic domains in the four-
dimensional structure.² (b) Parameters of the displacive modulations. (c) Parameters of the thermal coef®cients.² (d) Coef®cients of the orthogonalized functions.

Atom Multiplicity x1 x2 x3 x4 � Ueq �AÊ 2�
(a)
Rho 6 0 0 0 0 2/3 0.0092 (2)
Rhp 6 0 0 1/4 1/2 1/6 0.0134 (5)
O 18 0.1582 (5) 0 1/4 0 5/6 0.040 (3)
Sr 6 2/3 0 1/4 ± 1 0.0162 (2)

(b)
URho

x;1 = 0 URho
y;1 = 0 URho

z;1 = 0.0892 (2) URho
x;2 = 0 URho

y;2 = 0 URho
z;2 = 0

URho
x;3 = 0 URho

y;3 = 0 URho
z;3 = ÿ0.0176 (3) URho

x;4 = 0 URho
y;4 = 0 URho

z;4 = 0
UO

x;1 = 0.0005 (3) UO
y;1 = 0.0011 (7) UO

z;1 = 0.1045 (9) UO
x;2 = 0.0077 (5) UO

y;2 = 0 UO
z;2 = 0

UO
x;3 = 0 UO

y;3 = 0 UO
z;3 = ÿ0.0176 (3) UO

x;4 = 0 UO
y;4 = 0 UO

z;4 = 0
USr

x;s1 = 0.00801 (5) USr
y;s1 = 0.0160 (1) USr

z;s1 = 0 (2) USr
x;c1 = 0.01388 (9) USr

y;c1 = 0 USr
z;c1 = 0

USr
x;s2 = 0.00275 (7) USr

y;s2 = 0.0055 (1) USr
z;s2 = 0 USr

x;c2 = ÿ0.0048 (1) USr
y;c2 = 0 USr

z;c2 = 0

(c)
URho

u11;0 = 0.0068 (3) URho
u22;0 = 0.0068 (3) URho

u33;0 = 0.0140 (4) URho
u12;0 = 0.0034 (1) URho

u13;0 = 0 URho
u23;0 = 0

URho
u11;1 = 0 URho

u22;1 = 0 URho
u33;1 = 0 URho

u12;1 = 0 URho
u13;1 = 0 URho

u23;1 = 0
URho

u11;2 = ÿ0.0007 (3) URho
u22;2 = ÿ0.0007 (3) URho

u33;2 = ÿ0.0058 (4) URho
u12;2 = ÿ0.0004 (2) URho

u13;2 = 0 URho
u23;2 = 0

U
Rhp
u11;0 = 0.0084 (6) U

Rhp
u22;0 = 0.0084 (6) U

Rhp
u33;0 = 0.0234 (9) U

Rhp
u12;0 = 0.0042 (3) U

Rhp
u13;0 = 0 U

Rhp
u23;0 = 0

UO
u11;0 = 0.031 (3) UO

u22;0 = 0.093 (6) UO
u33;0 = 0.016 (2) UO

u12;0 = 0.047 (3) UO
u13;0 = 0.002 (1) UO

u23;0 = 0.003 (2)
UO

u11;1 = ÿ0.001 (2) UO
u22;1 = 0 UO

u33;1 = 0 UO
u12;1= ÿ0.001 (2) UO

u13;1 = ÿ0.002 (1) UO
u23;1 = 0

UO
u11;2 = ÿ0.021 (3) UO

u22;2 = ÿ0.074 (7) UO
u33;2 = ÿ0.004 (2) UO

u12;2 = ÿ0.037 (4) UO
u13;2 = 0.002 (2) UO

u23;2 = 0.005 (3)
UO

u11;3 = ÿ0.001 (3) UO
u22;3 = 0 UO

u33;3 = 0 UO
u12;3 = ÿ0.001 (3) UO

u13;3 = 0.003 (2) UO
u23;3 = 0

UO
u11;4 = 0.008 (4) UO

u22;4 = 0.021 (6) UO
u33;4 = ÿ0.003 (4) UO

u12;4 = 0.010 (3) UO
u13;4 = 0.001 (2) UO

u23;4 = 0.003 (4)
UO

u11;0= 0.0147 (3) UO
u22;0 = 0.0147 (3) UO

u33;0 = 0.0193 (5) UO
u12;0 = 0.0074 (1) UO

u13;0 = 0 UO
u23;0 = 0

UO
u11;s1 = 0.0025 (3) UO

u22;s1 = 0 UO
u33;s1 = 0 UO

u12;s1 = 0.0025 (3) UO
u13;s1 = 0.0086 (3) UO

u23;s1 = 0
UO

u11;c1 = ÿ0.0015 (1) UO
u22;c1 = 0.0029 (3) UO

u33;c1 = 0 UO
u12;c1 = 0.0015 (1) UO

u13;c1 = ÿ0.0050 (2) UO
u23;c1 = ÿ0.0100 (3)

UO
u11;s2 = ÿ0.0022 (4) UO

u22;s2 = 0 UO
u33;s2 = 0 UO

u12;s2 = ÿ0.0022 (4) UO
u13;s2 = ÿ0.0039 (4) UO

u23;s2 = 0
UO

u11;c2 = ÿ0.0013 (2) UO
u22;c2 = 0.0025 (5) UO

u33;c2 = 0 UO
u12;c2 = 0.0013 (2) UO

u13;c2 = ÿ0.0023 2) UO
u23;c2 = ÿ0.0046 (4)

UO
u11;s3 = 0 UO

u22;s3 = 0 UO
u33;s3 = 0 UO

u12;s3 = 0 UO
u13;s3 = 0 UO

u23;s3 = 0
UO

u11;c3 = 0.0017 (5) UO
u22;c3 = 0.0017 (5) UO

u33;c3 = 0.0021 (5) UO
u12;c3 = 0.0009 (2) UO

u13;c3 = 0 UO
u23;c3 = 0

orthoRho
i BRho

0 ARho
1 BRho

1 ARho
2 BRho

2 orthoO
i BO

0 AO
1 BO

1 AO
2 BO

2

(d )
orthoRho

0 1 orthoO
0 1

orthoRho
1 0 1.287 orthoO

1 0 1.310
orthoRho

2 ÿ0.870 0 2.105 orthoO
2 ÿ0.309 0 1.620

orthoRho
3 0 ÿ0.558 0 1.628 orthoO

3 0 ÿ0.074 0 1.361
orthoRho

4 2.055 0 ÿ3.586 0 2.769 orthoO
4 0.451 0 ÿ0.864 0 1.726

² We have used the term thermal coef®cient rather than the standard displacement coef®cient to avoid confusion in the present context.
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A comparison of Table 6 with Table 3 of Stitzer, El Abed et al.

(2001) indicates that the ®nal real-space structural model is

essentially the same.

The preceding re®nement demonstrates that two different

superspace descriptions are suitable for the analysis of the

trigonal A1�xA
0
xB1ÿxO3 compounds or, in other words, two

different idealized superspace models with discrete atomic

domains can be used as the starting point for a quantitative

determination of the structure. It is interesting to compare

both models with the help of Fig. 6, which contains valuable

information about the differences between the two approx-

imations. Fig. 6 shows the re®ned independent modulated

ADs in the layer option (solid lines) plus the ADs of the Rho

and O atoms of the ideal composite model (dashed lines),

expressed in the layer setting (as in Fig. 3b), and the relevant

points of these two ADs that correspond to real three-

dimensional atomic positions. The atomic surface representing

the Sr atom does not deviate from the vertical shape. This

result is due to the zero value of the z component of the ®rst

two harmonics of the Fourier series that is compatible with the

point symmetry of the AD (see the last column of Table 2).

Therefore, the ®nal shape of this AD coincides with the ideal

shape in both starting approximations. The small AD repre-

senting the Rhp atom is different in the composite (see Fig. 3b)

and layer (see Fig. 3c) descriptions. However, this AD gives

rise to just one independent atomic position in the three-

dimensional structure (Table 6), and that point comes from the

center of the atomic domain, which is the same in both ideal

models. Therefore, the speci®c shape of this small AD has no

relevance for this composition (in fact, it is not re®ned in any

of the two options). The most important information in the

®gure lies in the shape of the ADs that represent the Rho and

O atoms. Undoubtedly, the re®ned ADs are very much closer

to the ideal shapes of the composite approximation than to the

(vertical) shape of the ideal-layer model. In this case, we can

state that the structure is much closer to the ideal `composite

modulated phase' than to a commensurate layered structure

with perfect layers. This result could be expected from the very

small modulation amplitudes re®ned for the O and Rho

cations in the composite option (Stitzer, El Abed et al., 2001).

Even in this unfavorable case, however, the structure can be

successfully re®ned using a layer description, as shown above.

The number of parameters required for the re®nement was,

however, signi®cantly larger than in the composite option. In

the work of Stitzer, El Abed et al. (2001), where the composite

approximation was used, the number of re®ned parameters

was 32. In the re®nement presented above, using the layer

model, the number of parameters is 43. Another important

parameter that indicates the proximity of the structure to the

ideal composite model is the larger number of main re¯ec-

tions: 303, compared with 220 in the layer model. As, in the

composite option, the deviation of the real ADs with respect

to the reference ideal ADs is smaller than in the layer option,

the number of terms of the harmonic expansion necessary to

reproduce the correct shape is reduced. Other compounds of

the family, however, have much larger modulations in the

usual composite option (Zakhour-Nakhl, Darriet et al., 2000)

and therefore represent con®gurations that are more inter-

mediate between the two idealizations (see, for instance,

Fig. 7). A rough estimate of the closeness of the real structure

to the two extreme ideal models can be obtained by a

comparison of the average size of the octahedra and the

trigonal prisms. As shown above, in the composite ideal

approximation without displacive modulation they have the

same size, whereas in the ideal layer model, the z length of the

trigonal prisms is twice that of the octahedra. In the case of

Sr6Rh5O15, this average prism/octahedra z-length ratio is only

1.12, while in other compounds of the family the length ratio is

1.3 (El Abed et al., 2001, 2002). Therefore, there are other

compounds with con®gurations in clear intermediate states

between the two ideal reference models. We also cannot

dismiss the possibility that for certain cations the system may

be even closer to the ideal layer reference than to the

composite.

4. Superspace description of the orthorhombic
A1+xAx

000B1ÿxO3 phases

Recently, also within the Ba/Co/O system, a new series of

structures related to the 2H hexagonal perovskite has been

discovered and a preliminary characterization by electron

diffraction and electron microscopy has been reported. The

members Ba8Co7O21, Ba9Co8O24, Ba10Co9O27, Ba11Co10O30

and Ba12Co11O33 have been isolated (Boulahya et al., 2000a,b).

All the phases have been indexed according to an ortho-

Table 6
Atomic positions of the three-dimensional model (section 'L � 1=4,
space group R32) that results from the superspace model of Table 5.

Atom Site x y z

Sr1 9(d) 0.5758 0 0
Sr2 9(e) 0.3520 0 0.5
Rh1o 6(c) 0 0 0.9042
Rh2o 6(c) 0 0 0.7085
Rh3p 3(b) 0 0 0.5
O1 18(f) 0.1670 0.8096 0.8096
O2 9(d) 0.1653 0 0
O3 18(f) 0.8458 0.8550 0.6096

Figure 6
Independent ADs of the re®ned model in the layer framework (solid
lines) for the trigonal Sr6Rh5O15 compound. The relevant points (three-
dimensional atomic positions) are also indicated for the ADs repre-
senting the Rho and O atoms. The ideal shapes of the Rho and O ADs of
the composite model are indicated by dashed lines (see Fig. 3b).



rhombic cell. To a ®rst approximation, they can be described

as the stacking of two types of layers, as shown in Figs. 1(a) and

1(c), with compositions [A8O24] (eight times the basic unit of

the 2H hexagonal perovskite) and [A8A
0
2O18]. The latter layer

results from the former by an ordered removal of six O atoms

that are replaced by two A
0

atoms (see Fig. 1c). The substi-

tution can take place in four different ways, which give rise to

four equivalent layers that are shifted in the �x; y� plane. The

crosses in Fig. 1(c) indicate the origins of the other three

equivalent layers. The general formula of the series can be

written as A4m�4nA
0
nB4m�2nO12m�9n, where m/n is the propor-

tion of [A8O24] to [A8A
0
2O18] layers in the sequence. In the

�x; y� plane, the unit-cell parameters are a = 2a2H � 11:4 AÊ

and b = j2a2H � 4b2Hj = 2�3�1=2
a2H � 19:8 AÊ and the c para-

meter depends on the composition (m and n values).

This new orthorhombic family has a very close relationship

with the previously analyzed trigonal series. It can also be

described as a composite system made of two subsystems:

eight sets of [A
0
B]O3 columns, made up of trigonal prisms and

octahedra parallel to the c axis, separated by chains of A

cations. As in the trigonal series, the A
0

cations occupy the

prismatic sites and the B cations the centers of the octahedra.

The stoichiometric formula can also be written as

A1�x(A
0
xB1ÿx)O3 with x = n=�4m� 3n�. For rational values of

the composition parameter x = r/s, the integer r represents the

number of octahedra and (s ÿ r) the number of trigonal

prisms in the sequence of a single column. Alternatively, the

stoichiometric formula can be set as A�A0yB1ÿ2y�O3�1ÿ2y�, with

y = x/(1 + x). This new parameter y represents one-fourth of

the substituted layers of type [A8A
0
2O18] in the layer sequence

of the structure, when it is described as a layered modulated

phase.

The strong similarities between the two families encouraged

us to investigate the existence of a superspace model for this

orthorhombic case. With this purpose, we have applied the

general principles outlined in x2.3 to construct the superspace

model of the orthorhombic family. As the sequence along the c

direction alternates the two types of layers (A and B), the

average c parameter is the distance between two consecutive

A-type layers. The unit cell in the �x; y� plane coincides with

the lattice of the substituted layers [A8A
0
2O18], outlined in Fig.

1(c). We start from the original formulation of the compound

series, A4m�4nA
0
nB4m�2nO12m�9n. As the ratio of the number of

[A8O24] and substituted [A8A
0
2O18] layers in the stacking

sequence is m/n, the total widths of the ADs representing

normal and substituted layers also have the ratio m/n. Apart

from the composition of the layers, the only difference with

respect to the trigonal family is the presence of four different

but equivalent substituted layers. With these requirements and

the closeness condition, the superspace construction in the

modulated-layer model is a generalization of Fig. 5, with four

Ai and four Bi domains instead of three. Fig. 8 represents an

�x3; x4� projection of the superspace construction, where the

correct widths of the ADs have been included. The modula-

tion parameter 
L = 2y also coincides in the orthorhombic and

trigonal series. Once the con®guration of the ADs in the

superspace for the ideal layer model has been obtained, the

maximal superspace group is determined as the set of (3 + 1)-

dimensional symmetry transformations that keeps that

con®guration unchanged. The superspace group is

Xdcd�00
L�qq0, where X denotes a non-standard centering

translation that is equivalent, for a different choice of the

average basis, to the group Pbnn�1=2; 1=2; 
L�qq0 listed in the

International Tables for Crystallography (1992, Vol. C, p. 797).

Table 7 lists the generators and centering translations of the

superspace group, together with the resulting re¯ection

conditions. Table 8 shows the structural parameters of the

model: the average position, the center in x4, the width of the

independent atomic domains, the point symmetry and the

corresponding displacive modulation according to the point

symmetry. For rational compositions, the space group of the

structure depends on the 
L = rL=sL ratio and the value of the

'L phase. The full list of possible space groups is shown in

Table 9. Some of these space groups are not valid for

Acta Cryst. (2003). B59, 217±233 Luis Elcoro et al. � Superspace descriptions 229

research papers

Figure 7
Independent ADs of the re®ned model in the layer framework (solid
lines) for the orthorhombic Ba12Co11O33 compound (Darriet et al., 2002).
The relevant points (atomic positions after cutting) are also indicated for
the ADs representing the Coo and O atoms. The ideal shapes of the Coo

and O ADs of the composite model are indicated by dashed lines (see
Fig. 3).

Figure 8
A scheme of the layer model for the orthorhombic family. Thick black
and white domains represent layers of type A and B of [A8O24]
composition. Thick gray domains represents Ai and Bi layers of
[A8A

0
2O18] composition. Thin black and white domains represent layers

of eight and six B cations for each �x; y� unit cell, respectively. These
cations are located at the corresponding octahedral interstices created by
the two neighboring layers. Dotted lines help to check that the closeness
condition is ful®lled (see the text).
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discontinuous ADs, such as those presented here, and can be

disregarded.

In the trigonal family, the superspace construction of Fig. 5

and equivalent constructions are the only constructions that

ful®ll the requirements of x2.3. Therefore, assuming that those

principles are valid for all the compositions (as experiments

have shown up to now), the solution is unique. However, this is

not the case for the orthorhombic family. The simultaneous

interchange of A2 and A3 ADs on the one hand, and of B2 and

B3 ADs on the other (or other equivalent sets of inter-

changes), results in a non-equivalent superspace construction

with a different superspace group that also ful®lls the

requirements of x2.3. In real space, the main difference

between this alternative possible model and the model of

Fig. 8 is the A
0
±A

0
distance between cations of successive

[A8A
0
2O18] layers in the stacking sequence. In the model of

Fig. 8, for any value of the modulation parameter in the range

of validity of the y parameter, the sequence of substituted

layers [independently of the type of layer (A or B)] is 1, 2, 3, 4,

1, . . . , and the A
0
±A

0
distance is the same for any two

successive layers. However, for the other alternative, the

sequence is 1, 3, 2, 4, 1, . . . , and there are two different A
0
±A

0

distances between successive layers: the 1±3 (2±4) distance and

the 1±4 (3±2) distance. From this viewpoint, the latter alter-

native seems to be less symmetric than the former, but it

cannot be discarded a priori. The superspace group is

X
0
1121=a�00
L�, where the symbol X

0
represents the non-

standard centering translations (0,0,0,0), (1/4,3/4,0,1/2),

(3/4,1/4,0,1/2) and (1/2,1/2,0,0). The re¯ection conditions for

this superspace group are different from the re¯ection

conditions of Table 7. Consequently, an X-ray or electronic

diffraction experiment can elucidate which model (if either) is

correct. Darriet et al. (2002) reported the structure determi-

nation based on single-crystal X-ray diffraction of the

Ba12Co11O33 (x = 1/11, y = 1/12) compound. The diffraction

data ful®ll the re¯ection conditions of Table 7 and are

incompatible with the alternative superspace model, which

can therefore be discarded. Therefore, as a starting point for

the re®nements, the model of Fig. 8, and Tables 7 and 8 was

used. The successful results of the re®nements (Darriet et al.,

2002) indicate the correctness of the model and the suitability

of the superspace framework in the analysis of layered

structures.

Once the distribution of the ADs in the superspace has

been obtained, the layer-stacking sequence for any composi-

tion can be easily deduced. In this way, according to Fig. 8 , the

layer-stacking sequence for the compound Ba8Co7O21

(x = 1/7) is AB1AB2AB3AB4, which is the same as the

sequence proposed in the preliminary work of Boulahya et al.

(2000a,b). However, for Ba10Co9O27 (x = 1/9), Ba11Co10O30

(x = 1/10) and Ba12Co11O33 (x = 1/11) compounds, the layer-

stacking sequences predicted by the model above are

AB1AB2ABA3BA4B, AB1ABA2BA3BAB4ABA1BAB2AB3-

ABA4B and AB1ABA2BAB3ABA4B (or equivalents),

respectively, which are at variance with the stacking sequences

proposed by Boulahya et al. (2000a,b) for those compounds.

These sequences are incompatible with our model and

correspond to a less uniform distribution of the minority

motifs in the structures. The quantitative analysis of the

Ba12Co11O33 compound (Darriet et al., 2002) undoubtedly

indicates that, at least in this case, the superspace construction

of Fig. 8 (and its predicted layer-stacking sequence) is correct.

Finally, as in the trigonal case, a composite modulated

picture of the structure is also possible. To obtain the set of

ADs, superspace group and structural parameters, the proce-

dure of x2.3 must be applied in the opposite way. The results

are included in Tables 7±9. Both descriptions have been used

by Darriet et al. (2002) as the starting point of the re®nements

to demonstrate that both descriptions are equally ef®cient and

lead to the same three-dimensional structure. Fig. 7 depicts the

independent atomic positions in the re®ned orthorhombic

compound Ba12Co11O33 (Darriet et al., 2002), together with

the ideal ADs in the composite option, referred to the average

cell of the layer model. The structure, in this case, is clearly a

state more intermediate between the ideal composite model

and the ideal layer con®guration than the state in Fig. 6,

although the structure is also closer to the ideal composite.

The number of parameters required in order to obtain similar

R factors is, however, signi®cantly smaller than in the previous

case: 123 and 151 in the composite and the layer options,

respectively (Darriet et al., 2002).

5. Conclusions

As a result of the implicit arbitrariness that exists in the

superspace construction of a quasiperiodic structure with

discrete atomic domains, the structure of the trigonal family of

compounds A1�xA
0
xB1ÿxO3 can be analyzed in the superspace

either as a modulated composite or as a layered modulated

structure. In the ®rst case, the structure is viewed as consisting

of two subsystems of different periodicity along the c axis:

(i) rows of A cations and (ii) columns of face-sharing [A
0
B]O6

trigonal prisms and octahedra. In the second case, the struc-

Table 7
Symmetry operations of the superspace groups Fddd�00
C�0s0 (compo-
site option) and Xdcd�00
L�qq0 (layer option) and resulting re¯ection
conditions.

These space groups are equivalent to Fddd�00
C�s00 (No. 70.2) and
Pbnn�1=2; 1=2; 
L�qq0 (No. 52.7), respectively, in the International Tables
for Crystallography (1992, Vol. C, p. 797).

Fddd�00
C�0s0 Xdcd�00
L�qq0

x1; x2; x3; x4 x1; x2; x3; x4

ÿx1;
1
4� x2;

3
4� x3; x4 ÿx1;

1
4� x2; x3;

1
4� x4

1
4� x1;ÿx2;

3
4� x3;

1
2� x4

1
4� x1;ÿx2;

1
2� x3;

1
4� x4

1
4� x1;

1
4� x2;ÿx3;

1
2� 2'C ÿ x4

1
4� x1;

1
4� x2;

1
2ÿ x3; 2'L ÿ x4

1
2� x1;

1
2� x2; x3; x4

1
2� x1;

1
2� x2; x3; x4

1
2� x1; x2;

1
2� x3; x4

1
2� x1; x2; x3;

1
2� x4

x1;
1
2� x2;

1
2� x3; x4 x1;

1
2� x2; x3;

1
2� x4

Re¯ection conditions

�hklm� h� k = 2n �hklm� h� k = 2n
�hklm� h�m = 2n �hklm� h� l = 2n
�0klm� k�m = 4n �0klm� k� 3l = 4n
�h0lm� h� 2l �m = 4n �h0lm� h� 3l � 2m = 4n
�hk00� h� k = 4n �hk00� h� k = 4n



ture is interpreted as the stacking of [A3O9] and [A3A
0
O6]

layers along the c axis, the B cations being located in the

octahedral interstices between neighboring layers. The

number of prisms and octahedra in the ®rst description, or the

number of [A3O9] and [A3A
0
O6] layers in the second, is

composition dependent. The change from one description to

the other can be easily carried out in the superspace form-

alism. In fact, either of the two idealized starting models

(without displacive but with occupational step-like modula-

tions) can be described in the superspace framework of the

other model, by means of speci®c linear (sawtooth-like)

displacive modulations. A real structure deviates from both

idealized paradigms, and either of them can be used as

references and the starting point of a quantitative re®nement,

where the displacive modulations are determined. Up to now,

all the structure re®nements have been made with the

composite option. After the demonstration of the equivalence

of both approaches, we have re®ned the trigonal Sr6Rh5O15

phase with the layer option. The atomic positions obtained are

completely equivalent to those obtained by Stitzer, El Abed et

al. (2001) with the composite option. Even in this particular

case, where the results clearly indicate that the true structure

is much closer to the composite-ideal model than to the ideal-

layer model, the re®nement has been successful.

The description in superspace of these compounds as a

single modulated structure with a layered con®guration,

instead of the usual composite description, demonstrates that

these compounds ful®ll layer-stacking rules analogous to those

observed in other families of layered compounds. These

stacking rules translate into very simple topological properties

to be ful®lled by the con®guration of the discrete atomic

domains (crenel functions) in superspace. This fact, together

with the symmetry of the ideal layers, allows us to predict the

starting model to be re®ned, including the superspace-

symmetry group and set of crenel functions. We have applied

this approach to the recently reported orthorhombic family

A4m�4nA
0
nB4m�2nO12m�9n, where other types of layers exist, to

derive a priori a re®neable superspace model that is common

to the whole family and can then be readily transformed into a

composite description. This model has been successfully

applied to the re®nement of the compound Ba12Co11O33

(Darriet et al., 2002).

APPENDIX A
Mathematical relationships

In this section we summarize the mathematical relationships

between the parameters in the composite and layer models.

These superspace models are built up from different initial

average lattices, which implies different values for the coor-

dinates of the independent atomic surfaces, different expres-

sions for the symmetry elements and different indexing of the

diffraction patterns of the structures. In general, the set of

Bragg re¯ections in the diffraction pattern of a modulated

structure can be indexed by means of d reciprocal unit vectors

fa�i g, where a�1, a�2 and a�3 de®ne the reciprocal vectors of the

average unit cell and the remaining (dÿ 3) elements are the

independent modulation vectors. Any re¯ection of the

diffraction pattern can be expressed as

H �Pd
i�1

lia
�
i : �1�

If a different basis, a
0 �
i =

Pd
j�1 Mija

�
j , is used to index the same

set of re¯ections, the integer indices in the new basis are

related to the indices in the former basis by

l
0
i � Mÿ1

ji lj or l
0 � �Mÿ1�T l; �2�

where
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Table 8
Structural parameters in the superspace description for an orthorhombic
phase of general composition A�A0yB1ÿ2y�O3�1ÿy� with superspace group
Xdcd�00
L�qq0 when described as a layered structure and as a composite
modulated structure A1�x�A0xB1ÿx�O3[superspace group Fddd�oo
C�0s0].

The parameters of the composite option are only indicated (in square
brackets) when they differ from those of the layer option. Underlined
coordinates are re®neable. The ®fth and sixth columns indicate the center and
size of the atomic domains. In the composite option, the B, A

0
and O atoms

belong to the ®rst subsystem and the A atom to the second subsystem,
[W1 = �10j01� and W2 = �01j10�, respectively (van Smaalen, 1991)]. The A
atom in the composite option is referred to its own subsystem. The seventh
column shows the point symmetry of the atomic surface and the eighth column
the corresponding displacive modulations. s, a and no superscript denote a
symmetric, antisymmetric and general function, respectively.

Atom x1 x2 x3 x4 �
Point
symmetry

Displacive
modulation

B ÿ1=8 ÿ1/8 0 3/8 1ÿ 2y 211 �Us
1�x4�;Ua

2 �x4�;
Ua

3 �x4��
[ÿ3/8] [0] ��1ÿ x�=2�

A
0 ÿ1/8 ÿ1=8 1/4 ÿ1/8 y 121 �Ua

1 �x4�;Us
2�x4�;

Ua
3 �x4��

[ÿ3/8] [1/4] �x=2�
O1 ÿ1/8 ÿ1=24 1/4 3/8 1ÿ y 121 �Ua

1 �x4�;Us
2�x4�;

Ua
3 �x4��

[1/8] [1/4] [1/2]
O2 ÿ1=4 ÿ1=6 1=4 3/8 1ÿ y 1 �U1�x4�;U2�x4�;

U3�x4��
�1=8� [1/4] [1/2]

A ÿ1/8 ÿ7=24 1/4 ± 1 121 �Ua
1 �x4�;Us

2�x4�;
Ua

3 �x4��

Table 9
Possible space groups for commensurate structures with superspace
group Xdcd�00
L�qq0, modulation parameter 
L � rL=sL and section 'L

(layer option) or superspace group Fddd�00
C�0s0, modulation para-
meter 
C � rC=sC and section 'C (composite option).

In all cases, the number in International Tables for Crystallography (1992, Vol.
C, p. 797) of the resulting space group or equivalent is given. The space groups
with asterisks are not realized, as a result of the discontinuous atomic domains
considered for this compound series.

sL = 4n,
rC = 4n

'L = 0 (mod. 1=2sL) 'L = 1=4sL (mod. 1=2sL) 'L arbitrary
'C = 0 (mod. 1=2sC) 'C = 1/4 (mod. 1=2sC) 'C arbitrary
�F2=d11 (No. 15) Fd2d (No. 43) Fd11 (No. 9)

sL = 4n + 2,
rC = 4n + 2

'L = 0 (mod. 1=2sL) 'L = 1/8 (mod. 1=2sL) 'L arbitrary
'C = 0 (mod. 1=2sC) 'C = 1/4 (mod. 1=2sC) 'C arbitrary
F12=d1 (No. 15) �F2dd (No. 43) F1d1 (No. 9)

sL odd,
rC odd

'L = 0 (mod. 1=4sL) 'L = 1/8 (mod. 1=4sL) 'L arbitrary
'C = 0 (mod. 1=4sC) 'C = 1=8sC (mod. 1=4sC) 'C arbitrary
C1121=d (No. 14) �C2221 (No. 20) C1121 (No. 4)
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l � �l1; l2; . . . ; ld�; l
0 � �l01; l

0
2; . . . ; l

0
d�:

The new coordinates of a point in the superspace are also

related to the superspace coordinates in the previous

embedding through

x
0
i � Mijxj or x

0 � Mx; �3�
where

x
0 � �x01; x

0
2; . . . ; x

0
d�; x � �x1; x2; . . . ; xd�:

Finally, the relationship between the symmetry elements in the

two constructions is

fR0 jt0 g � MfRjtgMÿ1 � fMRMÿ1jMtg; �4�
where R and R

0
are the d � d matrices of the rotational parts

of the symmetry elements and t � �t1; t2; . . . ; td� and

t
0 � �t01; t

0
2; . . . ; t

0
d� are the associated translations. In our

particular trigonal and orthorhombic systems, the a1 = a and

a2 = b unit-cell vectors are common to the composite and layer

descriptions and the modulation is parallel to a�3, so that the

changes take place just in the �x3; x4� subspace. Therefore, in

the reciprocal space, for every re¯ection in the diffraction

pattern only the z component of the diffraction vector changes

from one description to the other. Consequently, the matrices

that relate the parameters of both models in direct and reci-

procal spaces are the direct sum of the (2 � 2)-dimensional

identity matrix and a 2 � 2 matrix. To simplify the notation in

the following, we will write just the relations between the x3

and x4 coordinates in the direct space and the z components of

the diffraction vector. In the composite option, the structure is

interpreted as comprising two subsystems with periodicity c1

and c2, respectively, along the z direction. Taking the c1

distance as the average unit, the z component of the diffrac-

tion vectors can be set as

Hz � lCc�1 �mCqC; qC � c�2 � 
Cc�1; �5�
where the C subscript denotes the composite option and the

modulation parameter is related to the composition through

the relation 
C = �1� x�=2. In x2, in order to transform from

the composite to the layer option, we interchanged the x3 and

x4 coordinates and introduced an integer, N, to keep the

modulation parameter in the layer model, 
L, in the range

�0; 1�. Hence, the new basis for the diffraction pattern is

Hz � lLc�2 �mLqL; qL � Nc�2 � c�1 � 
Lc�2; �6�
with

lL

mL

� �
� �N 1

�1 0

� �
lC

mC

� �
: �7�

In the direct space, the relations become

x3L

x4L

� �
� M

x3C

x4C

� �
; �8�

with

M � 0 1

�1 N

� �
:

Then, the symmetry elements are related by

R34Ljt3L; t4L

� 	 � M R34Cjt3C; t4C

� 	
Mÿ1; �9�

where R34C and R34L are the 2 � 2 matrices of the symmetry

elements that act on the �x3; x4� subspace in the composite and

layer models, respectively, and t3 and t4 are the associated

translation components. As R34C = �Identity,

R34L � R34C;
t3L

t4L

� �
� M

t3C

t4C

� �
: �10�

In the trigonal and orthorhombic phases analyzed above, for

the composition range x 2 �0; 1=2�, the minus sign in (6) is the

relevant sign and N = 2. In this case, the change through the M

matrix is equivalent to taking the second subsystem as the

reference and introducing a

W � ÿ1 2

0 1

� �
�11�

matrix (van Smaalen, 1991) for the ®rst subsystem, thus hiding

the layer picture of the structure. The expressions above have

been used to create Tables 1 and 2 for the trigonal family and

Tables 7 and 8 for the orthorhombic family.
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